Информатика - система счисления. Виды систем счисления

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Системы счисления

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные . Знаки, используемые при записи чисел, называются цифрами .

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы:

Например, VI = 5 + 1 = 6, а IX = 10 - 1 = 9.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией . Первая известная нам система, основанная на позиционном принципе - шестидесятeричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим - десятки. Следы вавилонской системы сохранились до наших дней в способах измерения и записи величин углов и промежутков времени.

Однако наибольшую ценность для нас имеет индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной , так как в ней десять цифр.

Для того чтобы лучше понять различие позиционной и непозиционной систем счисления, рассмотрим пример сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Большая цифра соответствует большему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.

Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 555 7 - число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы - это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число x может быть представлено в системе с основанием p, как x=a n *p n +a n-1 *p n-1 + a 1 *p 1 +a 0 *p 0 , где a n ...a 0 - цифры в представлении данного числа. Так, например,

1035 10 =1*10 3 +0*10 2 +3*10 1 +5*10 0 ;

1010 2 = 1*2 3 +0*2 2 +1*2 1 +0*2 0 = 10.

Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины. Однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32.

Для того чтобы нормально оперировать с числами, записанными в таких нетрадиционных системах, важно понимать, что принципиально они ничем не отличаются от привычной нам десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.

Почему же мы не пользуемся другими системами счисления? В основном потому, что в повседневной жизни мы привыкли пользоваться десятичной системой счисления, и нам не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления , так как оперировать над числами, записанными в двоичном виде, довольно просто.

Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.

Двоичная система счисления

Люди предпочитают десятичную систему , вероятно, потому, что с древних времен считали по пальцам. Но, не всегда и не везде люди пользовались десятичной системой счисления. В Китае, например, долгое время применялась пятеричная система счисления. В ЭВМ используют двоичную систему потому, что она имеет ряд преимуществ перед другими:

    для ее реализации используются технические элементы с двумя возможными состояниями (есть ток - нет тока, намагничен - ненамагничен);

    представление информации посредством только двух состояний надежно и помехоустойчиво ;

    возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;

    двоичная арифметика проще десятичной (двоичные таблицы сложения и умножения предельно просты).

В двоичной системе счисления всего две цифры, называемые двоичными (binary digits ). Сокращение этого наименования привело к появлению термина бит , ставшего названием разряда двоичного числа. Веса разрядов в двоичной системе изменяются по степеням двойки. Поскольку вес каждого разряда умножается либо на 0, либо на 1, то в результате значение числа определяется как сумма соответствующих значений степеней двойки. Если какой-либо разряд двоичного числа равен 1, то он называется значащим разрядом. Запись числа в двоичном виде намного длиннее записи в десятичной системе счисления .

Арифметические действия, выполняемые в двоичной системе, подчиняются тем же правилам, что и в десятичной системе. Только в двоичной системе перенос единиц в старший разряд возникает чаще, чем в десятичной. Вот как выглядит таблица сложения в двоичной системе:

Рассмотрим подробнее, как происходит процесс умножения двоичных чисел. Пусть надо умножить число 1101 на 101 (оба числа в двоичной системе счисления ). Машина делает это следующим образом: она берет число 1101 и, если первый элемент второго множителя равен 1, то она заносит его в сумму. Затем сдвигает число 1101 влево на одну позицию, получая тем самым 11010, и если, второй элемент второго множителя равен единице, то тоже заносит его в сумму. Если элемент второго множителя равен нулю, то сумма не изменяется.

Двоичное деление основано на методе, знакомом вам по десятичному делению, т. е. сводится к выполнению операций умножения и вычитания. Выполнение основной процедуры - выбор числа, кратного делителю и предназначенного для уменьшения делимого , здесь проще, так как таким числом могут быть только либо 0, либо сам делитель.

Следует отметить, что большинство калькуляторов, реализованных на ЭВМ (в том числе и KCalc) позволяют осуществлять работу в системах счисления с основаниями 2, 8, 16 и, конечно, 10.

8-ная и 16-ная системы счисления

При наладке аппаратных средств ЭВМ или создании новой программы возникает необходимость "заглянуть внутрь" памяти машины, чтобы оценить ее текущее состояние. Но там все заполнено длинными последовательностями нулей и единиц двоичных чисел. Эти последовательности очень неудобны для восприятия человеком, привыкшим к более короткой записи десятичных чисел. Кроме того, естественные возможности человеческого мышления не позволяют оценить быстро и точно величину числа, представленного, например, комбинацией из 16 нулей и единиц.

Для облегчения восприятия двоичного числа решили разбивать его на группы разрядов, например, по три или четыре разряда. Эта идея оказалась очень удачной, так как последовательность из трех бит имеет 8 комбинаций, а последовательность из 4 бит - 16. Числа 8 и 16 являются степенями двойки, поэтому легко находить соответствие с двоичными числами. Развивая эту идею, пришли к выводу, что группы разрядов можно закодировать, сократив при этом длину последовательности знаков. Для кодировки трех битов требуется восемь цифр, поэтому взяли цифры от 0 до 7 десятичнойсистемы . Для кодировки же четырех битов необходимо шестнадцать знаков; для этого взяли 10 цифр десятичной системы и 6 букв латинского алфавита: A, B, C, D, E, F. Полученные системы, имеющие основания 8 и 16, назвали соответственно восьмеричной и шестнадцатеричной.

В восьмеричной (octal ) системе счисления используются восемь различных цифр 0, 1, 2, 3, 4, 5, 6, 7. Основание системы - 8. При записи отрицательных чисел перед последовательностью цифр ставят знак минус. Сложение, вычитание, умножение и деление чисел, представленных в восьмеричной системе, выполняются весьма просто подобно тому, как это делают в общеизвестной десятичной системе счисления.

В шестнадцатеричной (hexadecimal ) системе счисления применяется десять различных цифр и шесть первых букв латинского алфавита. При записи отрицательных чисел слева от последовательности цифр ставят знак минус. Для того чтобы при написании компьютерных программ отличить числа, записанные в шестнадцатеричной системе, от других, перед числом ставят 0x. То есть 0x11 и 11 - это разные числа. В других случаях можно указать основание системы счисления нижним индексом.

Шестнадцатеричная система счисления широко используется при задании различных оттенков цвета при кодировании графической информации (модель RGB). Так, в редакторе гипертекста Netscape Composer можно задавать цвета для фона или текста как в десятичной, так и шестнадцатеричной системах счисления.

Части статьи мы с вами разбирали двоичную систему счисления. Ну что же, думаю продолжим;-). Что же такое все таки бит? Что же он из себя представляет? Как Вы поняли, бит – это один знак в двоичной системе счисления. С помощью одного бита мы можем зашифровать две информации: ДА или НЕТ . Помните нашего человечка из первой статьи с варежками из мамонта? Его одна рука – это один бит. С помощью этой руки он может показать две информации: ДА или НЕТ. Рука поднята вверх – ДА, рука опущена – НЕТ. Еще раз повторюсь, в электронике за слово “ДА” принимают единичку, за слово “НЕТ” – нолик, то есть ДА=1, НЕТ=0, сигнал есть – 1, сигнала нет – 0.

А сколько же информации можно показать с помощью двух бит? Два бита – это два знака вместе в двоичной системе счисления. Пусть у нашего человечка обе руки свободны. Какие комбинации рук он может применить?

1)Подняты сразу две руки

2) Поднята правая рука, левая опущена

3) Поднята левая рука, правая опущена

4) Опущены обе руки

Кто придумает еще комбинацию, сразу же сделаю админом “Практической электроники” пожизненно:-). Больше комбинаций НЕТ! Это значит, что с помощью двух рук (двух битов) мы можем закодить 4 информации. Помните еще пример с первой статьи?

бар – это 1, дом – 0, пиво – 1, водка – 0.

1) Сидим в баре, пьем пиво (11)

2) Сидим в баре, пьем водку (10)

3) Сидим дома, пьем пиво (01)

4) Сидим дома, пьем водку (00)

В этом примере с помощью двух битов мы закодировали 4 информации. 11 или 10 и тд. – это двух битная запись информации.

А сколько информации можно закодировать, используя три бита? Можно получить 8 информаций. Опять же пример из первой части:

1) Сидим в баре, пьем пиво без Вована (110)

2) Сидим в баре, пьем водку без Вована (100)

3) Сидим дома, пьем пиво без Вована (010)

4) Сидим дома, пьем водку без Вована (000)

5) Сидим в баре, пьем пиво с Вованом (111)

6) Сидим в баре, пьем водку с Вованом (101)

7) Сидим дома, пьем пиво с Вованом (011)

8) Сидим дома, пьем водку с Вованом (001)

111, 011, 010 и тд – это трех битная запись информации.

А если использовать 4 бита информации? Получаем из примера прошлой же статьи:

1) Сидим в баре, пьем пиво без Вована, смотрим хоккей (1101)

2) Сидим в баре, пьем водку без Вована, смотрим хоккей (1001)

3) Сидим дома, пьем пиво без Вована, смотрим хоккей (0101)

4) Сидим дома, пьем водку без Вована, смотрим хоккей (0001)

5) Сидим в баре, пьем пиво с Вованом, смотрим хоккей (1111)

6) Сидим в баре, пьем водку с Вованом, смотрим хоккей (1011)

7) Сидим дома, пьем пиво с Вованом, смотрим хоккей (0111)

8) Сидим дома, пьем водку с Вованом, смотрим хоккей (0011)

9) Сидим в баре, пьем пиво без Вована, смотрим футбол (1100)

10) Сидим в баре, пьем водку без Вована, смотрим футбол (1000)

11) Сидим дома, пьем пиво без Вована, смотрим футбол (0100)

12) Сидим дома, пьем водку без Вована, смотрим футбол (0000)

13) Сидим в баре, пьем пиво с Вованом, смотрим футбол (1110)

14) Сидим в баре, пьем водку с Вованом, смотрим футбол (1010)

15) Сидим дома, пьем пиво с Вованом, смотрим футбол (0110)

16) Сидим дома, пьем водку с Вованом, смотрим футбол (0010)

Формула возможных вариантов

В этом примере с помощью четырех бит мы смогли закодировать 16 информаций. А что будет если использовать пять бит? Сколько информации мы можем закодировать? Неужели нам придется опять перебирать варианты? Ну уж нет! Для этого есть простая формула.

Возможные варианты информаций= 2 N , где N – количество битов

Предположим, мы используем два бита, следовательно, мы можем закодировать 2 2 =2х2=4 информаций, то есть 4 возможных варианта, если же используем три бита, то 2 3 =2х2х2=8, значит 8 информаций мы можем закодировать с помощью трех битов и тд. Нетрудно посчитать, что с помощью пяти битов можно закодировать 2 5 =2х2х2х2х2=32. Все просто, не правда ли? А сколько информаций мы можем закодировать, если использовать 8 бит? Итак, 2 8 =2х2х2х2х2х2х2х2=256 информаций! Неплохо! Короче говоря, если наш воин, который носит варежки из мамонта, имел бы восемь рук, он смог бы показать с помощью них 256 всех комбинаций, и если бы они договорились, что какая-то комбинация – это столько то убитых человечков. :-). Жесть))) Кстати, как Вы прочитали из прошлой статьи, 8 бит = 1 Байт. Например, информация с кодом 1011 0111 (пробел между группами из 4 битов ставится для удобства) – это восемь бит или просто Байт .

Перевод из одной системы в другую с помощью калькулятора

Давайте вернемся к нашей десятичной системе счисления. Если Вы помните, к десятичной системе мы относим циферки от 0 и до 9. А Вы знаете, что с помощью нехитрых вычислений, мы можем переводить информацию из одной системы счисления в другую? В вашей Винде есть одна нехитрая программка, на которую вы почти не обращаете внимание – это калькулятор;-), с помощью которого можно легко переводить числа из десятичной в двоичную систему и наоборот.

Нажимаем в меню панели “Вид” —->”Программист” и у нас получается вот такой прикольный калькулятор.


Теперь самое простое, нажимаем маркер на “Dec” и для аккуратного вида на “1 байт”. Пишем число в калькуляторе и смотрим на его двоичный код.

В данном примере я посмотрел, как запишется число “8” в двоичной системе счисления. Вуаля! А вот снизу под восьмеркой сразу и результат: 1000. Именно так запишется число “8” из десятичной системы счисления в двоичную.


Также калькулятор может переводить даже отрицательные числа из десятичной в двоичную систему. А вот число “-5” из десятичной системы в двоичной запишется, как 1111 1011 .


Кто-то из Вас может похвастаться: “Да я сам могу переводить числа из десятичной в двоичную на листочке бумаги”. Но, Вам это надо, когда есть такой замечательный калькулятор? ;-)

Двоично-десятичная система счисления

Трудно все это, не правда ли? Чтобы облегчить жизнь, была придумана двоично-десятичная система счисления . Эта система, думаю, проще некуда! Например, число “123” из десятичной системы нам надо представить в двоично-десятичную. Каждую цифру пишем в двоичном четырехбитном коде. Используем калькулятор. Число 1 в десятичной системе – это 0001, число 2 – 0010, а 3 – 0011. Итак, число “123”, записанное в двоично-десятичной системе счисления запишется, как 0001 0010 0011. Ну реально, проще некуда!

В курсе информатики, вне зависимости, школьном или университетском, особое место уделяется такому понятию как системы счисления. Как правило, на него выделяют несколько уроков или практических занятий. Основная цель - не только усвоить основные понятия темы, изучить виды систем счисления, но и познакомиться с двоичной, восьмеричной и шестнадцатеричной арифметикой.

Что это значит?

Начнем с определения основного понятия. Как отмечает учебник "Информатика", система счисления - записи чисел, в которой используется специальный алфавит или определенный набор цифр.

В зависимости от того, меняется ли значение цифры от ее положения в числе, выделяют две: позиционную и непозиционную системы счисления.

В позиционных системах значение цифры меняется вместе с ее положением в числе. Так, если взять число 234, то цифра 4 в ней означает единицы, если же рассмотреть число 243, то тут она будет уже означать десятки, а не единицы.

В непозиционных системах значение цифры статично, вне зависимости от ее положения в числе. Наиболее яркий пример - палочковая система, где каждая единица обозначается с помощью черточки. Неважно, куда вы припишите палочку, значение числа измениться лишь на единицу.

Непозиционные системы

К непозиционным системам счисления относятся:

  1. Единичная система, которая считается одной из первых. В ней вместо цифр использовались палочки. Чем их было больше, тем больше было значение числа. Встретить пример чисел, записанных таким образом, можно в фильмах, где речь идет о потерянных в море людях, заключенных, которые отмечают каждый день с помощью зарубок на камне или дереве.
  2. Римская, в которой вместо цифр использовались латинские буквы. Используя их, можно записать любое число. При этом его значение определялось с помощью суммы и разницы цифр, из которых состояло число. Если слева от цифры находилось меньшее число, то левая цифра вычиталась из правой, а если справа цифра была меньше или равна цифре слева, то их значения суммировались. Например, число 11 записывалось как XI, а 9 - IX.
  3. Буквенные, в которых числа обозначались с помощью алфавита того или иного языка. Одной из них считается славянская система, в которой ряд букв имел не только фонетическое, но и числовое значение.
  4. в которой использовалось всего два обозначения для записи - клинья и стрелочки.
  5. В Египте тоже использовались специальные символы для обозначения чисел. При записи числа каждый символ мог использоваться не более девяти раз.

Позиционные системы

Большое внимание уделяется в информатике позиционным системам счисления. К ним относятся следующие:

  • двоичная;
  • восьмеричная;
  • десятичная;
  • шестнадцатеричная;
  • шестидесятеричная, используемая при счете времени (к примеру, в минуте - 60 секунд, в часе - 60 минут).

Каждая из них обладает своим алфавитом для записи, правилами перевода и выполнения арифметических операций.

Десятичная система

Данная система является для нас наиболее привычной. В ней используются цифры от 0 до 9 для записи чисел. Они также носят название арабских. В зависимости от положения цифры в числе, она может обозначать разные разряды - единицы, десятки, сотни, тысячи или миллионы. Ее мы пользуемся повсеместно, знаем основные правила, по которым производятся арифметические операции над числами.

Двоичная система

Одна из основных систем счисления в информатике - двоичная. Ее простота позволяет компьютеру производить громоздкие вычисления в несколько раз быстрее, нежели в десятичной системе.

Для записи чисел используется лишь две цифры - 0 и 1. При этом, в зависимости от положения 0 или 1 в числе, его значение будет меняться.

Изначально именно с помощью компьютеры получали всю необходимую информацию. При этом, единица означала наличие сигнала, передаваемого с помощью напряжения, а ноль - его отсутствие.

Восьмеричная система

Еще одна известная компьютерная система счисления, в которой применяются цифры от 0 до 7. Применялась в основном в тех областях знаний, которые связаны с цифровыми устройствами. Но в последнее время она употребляется значительно реже, так как на смену ей пришла шестнадцатеричная система счисления.

Двоично-десятичная система

Представление больших чисел в двоичной системе для человека - процесс довольно сложный. Для его упрощения была разработана Используется она обычно в электронных часах, калькуляторах. В данной системе из десятичной системы в двоичную преобразуется не все число, а каждая цифра переводится в соответствующий ей набор нулей и единиц в двоичной системе. Аналогично происходит и перевод из двоичной системы в десятичную. Каждая цифра, представленная в виде четырехзначного набора нулей и единиц, переводится в цифру десятичной системы счисления. В принципе, нет ничего сложного.

Для работы с числам в данном случае пригодится таблица систем счисления, в которой будет указано соответствие между цифрами и их двоичным кодом.

Шестнадцатеричная система

В последнее время все большую популярность приобретает в программировании и информатике система счисления шестнадцатеричная. В ней используются не только цифры от 0 до 9, но и ряд латинских букв - A, B, C, D, E, F.

При этом, каждая из букв имеет свое значение, так A=10, B=11, C=12 и так далее. Каждое число представляется в виде набора из четырех знаков: 001F.

Перевод чисел: из десятичной в двоичную

Перевод в системах счисления чисел происходит по определенным правилам. Наиболее часто встречается перевод из двоичной в десятичную систему и наоборот.

Для того, чтобы перевести число из десятичной системы в двоичную, необходимо последовательно делить его на основание системы счисления, то есть, число два. При этом, остаток от каждого деления необходимо фиксировать. Так будет происходить до тех пор, пока остаток от деления не будет меньше или равен единице. Проводить вычисления лучше всего в столбик. Затем полученные остатки от деления записываются в строку в обратном порядке.

Например, переведем число 9 в двоичную систему:

Делим 9, так как число не делится нацело, то берем число 8, остаток будет 9 - 1 = 1.

После деления 8 на 2 получаем 4. Снова делим его, так как число делится нацело - получаем в остатке 4 - 4 = 0.

Проводим ту же операцию с 2. В остатке получаем 0.

В итоге деления у нас получается 1.

Вне зависимости от итоговой системы счисления, перевод чисел из десятичной в любую другую будет происходить по принципу деления числа на основу позиционной системы.

Перевод чисел: из двоичной в десятичную

Довольно легко переводить числа и в десятичную систему счисления из двоичной. Для этого достаточно знать правила возведения чисел в степень. В данном случае, в степень двойки.

Алгоритм перевода следующий: каждую цифру из кода двоичного числа необходимо умножить на двойку, причем, первая двойка будет в степени m-1, вторая - m-2 и так далее, где m - количество цифр в коде. Затем сложить результаты сложения, получив целое число.

Для школьников этот алгоритм можно объяснить проще:

Для начала берем и записываем каждую цифру, умноженную на двойку, затем проставляем степень двойки с конца, начиная с нуля. Потом складываем полученное число.

Для примера разберем с вами полученное ранее число 1001, переведя его в десятичную систему, и заодно проверим правильность наших вычислений.

Выглядеть это будет следующим образом:

1*2 3 + 0*2 2 +0*2 1 +1*2 0 = 8+0+0+1 =9.

При изучении данной темы удобно использовать таблицу со степенями двойки. Это существенно уменьшит количество времени, необходимое для проведения вычислений.

Другие варианты перевода

В некоторых случаях перевод может осуществляться между двоичной и восьмеричной системой счисления, двоичной и шестнадцатеричной. В таком случае можно пользоваться специальными таблицами или же запустить на компьютере приложение калькулятор, выбрав во вкладке вид вариант «Программист».

Арифметические операции

Вне зависимости от того, в каком виде представлено число, с ним можно проводить привычные для нас вычисления. Это может быть деление и умножение, вычитание и сложение в системе счисления, которую вы выбрали. Конечно, для каждой из них действуют свои правила.

Так для двоичной системы разработаны свои таблицы для каждой из операций. Такие же таблицы используются и в других позиционных системах.

Заучивать их необязательно - достаточно просто распечатать и иметь под рукой. Также можно воспользоваться калькулятором на ПК.

Одна из важнейших тем в информатике - система счисления. Знание этой темы, понимание алгоритмов перевода чисел из одной системы в другую - залог того, что вы сможете разобраться в более сложных темах, таких как алгоритмизация и программирование и сможете самостоятельно написать свою первую программу.

Двоичная система счисления сегодня используется практически во всех цифровых устройствах. Компьютеры, контроллеры и другие вычислительные устройства производят вычисления именно в двоичной системе. Цифровые устройства записи и воспроизведения звука, фото и видео хранят и обрабатывают сигналы в двоичной системе счисления. Передача информации по цифровым каналам связи также использует модель двоичной системы счисления.

Система носит такое название, потому что основанием системы является число два (2 ) или в двоичной системе 10 2 - это значит что для изображения чисел используется только две цифры "0" и "1". Двоечка записанная справа внизу от числа, здесь и далее будет обозначать основание системы счисления. Для десятичной системы основание обычно не указывают.

Ноль - 0 ;
Один - 1 ;

А что делать дальше? Все цифры кончились. Как же изобразить число два? В десятичной системе, в подобной ситуации (когда закончились цифры), мы вводили понятие десятка, здесь же мы вынуждены ввести понятие "двойка" и скажем, что два - это одна двойка и ноль единиц. А это уже можно и записать как - "10 2 ".

Итак, Два - 10 2 (одна двойка, ноль единиц)
Три - 11 2 (одна двойка, одна единица)

Четыре - 100 2 (одна четверка, ноль двоек, ноль единиц)
Пять - 101 2 (одна четверка, ноль двоек, одна единица)
Шесть - 110 2 (одна четверка, одна двойка, ноль единиц)
Семь - 111 2 (одна четверка, одна двойка, одна единица)

Возможности трех разрядов исчерпались, вводим более крупную единицу счета - восьмерку (осваиваем новый разряд).

Восемь - 1000 2 (одна восьмерка, ноль четверок, ноль двоек, ноль единиц)
Девять - 1001 2 (одна восьмерка, ноль четверок, ноль двоек, одна единица)
Десять - 1010 2 (одна восьмерка, ноль четверок, одна двойка, ноль единиц)
...
и так далее...
...

Всегда, когда возможности задейсвованых разрядов, для отображения следующего числа, исчерпываются, мы вводим более крупные единицы счета, т.е. задействуем следующий разряд.

Рассмотрим число 1011 2 записанное в двоичной системе счисления. Про него можно сказать, что оно содержит: одну восьмерку, ноль четверок, одну двойку и одну единицу. И получить его значение через входящие в него цифры можно следующим образом.

1011 2 = 1 *8+0 *4+1 *2+1 *1, здесь и далее знак * (звездочка) означает умножение.

Но ряд чисел 8, 4, 2, 1 есть не что иное, как целые степени числа два (основания системы счисления) и поэтому можно записать:

1011 2 = 1 *2 3 +0 *2 2 +2 *2 1 +2 *2 0

Подобным образом для двоичной дроби (дробного числа) например: 0.101 2 (пять восьмых), про него можно сказать, что оно содержит: одну вторую, ноль четвертых и одну восьмую долю. И его значение можно вычислить следующим образом:

0.101 2 = 1 *(1/2) + 0 *(1/4) + 1 *(1/8)

И здесь ряд чисел 1/2; 1/4 и 1/8 есть не что иное, как целые степени числа два и мы также можем записать:

0.101 2 = 1 *2 -1 + 0 *2 -2 + 1 *2 -3

Для смешанного числа 110.101 аналогичным образом можем записать:

110.101 = 1 *2 2 +1 *2 1 +0 *2 0 +1 *2 -1 +0 *2 -2 +1 *2 -3

Давайте пронумеруем разряды целой части двоичного числа, справа налево, как 0,1,2…n (нумерация начинается с нуля!). А разряды дробной части, слева направо, как -1,-2,-3…-m. Тогда значение некоторого двоичного числа может быть вычислено по формуле:

N = d n 2 n +d n-1 2 n-1 +…+d 1 2 1 +d 0 2 0 +d -1 2 -1 +d -2 2 -2 +…+d -(m-1) 2 -(m-1) +d -m 2 -m

Где: n - количество разрядов в целой части числа минус единица;
m - количество разрядов в дробной части числа
d i - цифра стоящая в i -м разряде

Эта формула называется формулой разложения двоичного числа, т.е. числа записанного в двоичной системе счисления. Но если в этой формуле число два заменить на некоторое абстрактное q , то мы получим формулу разложения для числа записанного в q-й системе счисления:

N = d n q n +d n-1 q n-1 +…+d 1 q 1 +d 0 q 0 +d -1 q -1 +d -2 q -2 +…+d -(m-1) q -(m-1) +d -m q -m

С помощью этой формулы вы всегда сможете вычислить значение не только двоичного числа, но и числа записанного в любой другой позиционной системе счислени. О других системах счисления рекомендуем почитать следующие статьи.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Владея развитой компьютерной теорией, программисты иногда забывают о той роли, которую сыграли системы счисления в истории компьютеров. Ведь первые счетные приборы (абаки и арифмометры), прообразы современных компьютеров, начали создаваться задолго до возникновения алгебры логики, теории алгоритмов - и главную роль при их создании сыграли именно системы счисления. Об этом следует помнить, прогнозируя дальнейшее развитие компьютерной техники.

1. Происхождение и история развития систем счисления

На ранних ступенях развития общества люди почти не умели считать. У первобытных народов не существовало развитой системы счисления. Еще в 19 веке у многих племен Австралии и Полинезии было только два числительных: один и два; сочетания их образовывали числа: 3 - два - один, 4 - два - два, 5 - два - два - один и 6 - два - два - два. Обо всех числах, больших 6, говорили «много», не индивидуализируя их. Это был еще не счет, а лишь его зародыш.

Впоследствии способность различать друг от друга небольшие совокупности развивалась; возникли слова для обозначений понятий «четыре», «пять», «шесть», «семь». Последнее слово длительное время обозначало также неопределенно большое количество. Наши пословицы сохранили память об этой эпохе («семь раз отмерь - один раз отрежь», «у семи нянек дитя без глазу», «семь бед - один ответ» и т.д.).

В период правления династий Маурьев и Гуптов (IV - II вв. до н.э. - VIII в.н.э), индийскими учеными была создана десятичная система счисления, современное начертание цифр (позже названных в несколько измененном виде арабскими).

Одной из наиболее древних систем счисления является египетская иероглифическая нумерация, возникшая еще за 2500 - 3000 лет до н. э. Это была десятичная непозиционная система счисления, в которой для записи чисел применялся только принцип сложения (числа, выраженные рядом стоящими цифрами, складываются). Специальные знаки имелись для единицы, десяти, ста и других десятичных разрядов до.

С развитием общественно-хозяйственной жизни возникла потребность в создании систем счисления, которые позволяли бы вести счет в более обширных пределах и обозначать все большие совокупности предметов. Для этого человек пользовался окружавшими его предметами, как инструментами счета: он делал зарубки на палках и на деревьях, завязывал узлы на веревках, складывал камешки в кучки и т.п. Такой вид счета носит название унарной системы счисления, т.е. система счисления, в которой для записи числа применяется только один вид знаков. Это удобно, так как сразу визуально определяется количество знаков и сопоставляется с количеством предметов, которые эти знаки обозначают. Все мы ходили в первый класс и считали там, на счетных палочках - это отзвук той далекой эпохи. Кстати, от счета с помощью камешков ведут свое начало различные усовершенствованные инструменты, такие как, например, русские счеты, китайские счеты («сван-пан»), древнеегипетский «абак» (доска, разделенная на полосы, куда клались жетоны). Аналогичные инструменты существовали у многих народов. Более того, в латинском языке понятие «счет» выражается словом «calculatio» (отсюда наше слово «калькуляция»); а происходит оно от слова «calculus», означающего «камешек».

Особо важную роль играл природный инструмент человека - его пальцы. Этот инструмент не мог длительно хранить результат счета, но зато всегда был «под рукой» и отличался большой подвижностью. Язык первобытного человека был беден; жесты возмещали недостаток слов, и числа, для которых еще не было названий, «показывались» на пальцах.

На первых порах расширение запаса чисел происходило медленно. Сначала люди овладели счетом в пределах нескольких десятков и лишь позднее дошли до сотни. У многих народов число 40 долгое время было пределом счета и названием неопределенно большого количества. В русском языке слово «сороконожка» имеет смысл «многоножка»; выражение «сорок сороков» означало в старину число, превосходящее всякое воображение.

На следующей ступени счет достигает нового предела: десяти десятков, и создается название для числа 100. Вместе с тем слово «сто» приобретает смысл неопределенно большого числа. Такой же смысл приобретают потом последовательно числа тысяча, десять тысяч (в старину это число называлось «тьма»), миллион.

На современном этапе границы счета определены термином «бесконечность», который не обозначает, какое либо конкретное число.

2. История возникновения двоичной системы счисления

Системой счисления называется совокупность приемов и правил для наименования и обозначения чисел. Условные знаки, применяемые для обозначения чисел, называются цифрами.

Обычно все системы счисления разбивают на два класса: непозиционные и позиционные.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает означает 7 сотен, вторая -- 7 единиц, а третья -- 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения:

В непозиционных системах счисления вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

Исторически первыми системами счисления были именно непозиционные системы. Одним из основных недостатков является трудность записи больших чисел. Запись больших чисел в таких системах либо очень громоздка, либо алфавит системы чрезвычайно велик. Примером непозиционной системы счисления, достаточно широко применяющейся в настоящее время, может служить так называемая римская нумерация.

Двоичная система счисления, т.е. система с основанием, является «минимальной» системой, в которой полностью реализуется принцип позиционности в цифровой форме записи чисел. В двоичной системе счисления значение каждой цифры «по месту» при переходе от младшего разряда к старшему увеличивается вдвое.

История развития двоичной системы счисления - одна из ярких страниц в истории арифметики. Официальное «рождение» двоичной арифметики связывают с именем Г.В. Лейбница, опубликовавшего статью, в которой были рассмотрены правила выполнения всех арифметических операций над двоичными числами.

Лейбниц, однако, не рекомендовал двоичную арифметику для практических вычислений вместо десятичной системы, но подчеркивал, что "вычисление с помощью двоек, то есть 0 и 1, в вознаграждение его длиннот является для науки основным и порождает новые открытия, которые оказываются полезными впоследствии, даже в практике чисел, а особенно в геометрии: причиной чего служит то обстоятельство, что при сведении чисел к простейшим началам, каковы 0 и 1, всюду выявляется чудесный порядок".

Лейбниц считал двоичную систему простой, удобной и красивой. Он говорил, что «вычисление с помощью двоек... является для науки основным и порождает новые открытия... При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

По просьбе ученого в честь «диадической системы» - так тогда называли двоичную систему - была выбита медаль. На ней изображалась таблица с числами и простейшие действия с ними. По краю медали вилась лента с надписью: «Чтобы вывести из ничтожества все, достаточно единицы».

Потом о двоичной системе забыли. В течение почти 200 лет на эту тему не было издано ни одного труда. Вернулись к ней только в 1931 году, когда были продемонстрированы некоторые возможности практического применения двоичного счисления.

Блестящие предсказания Лейбница сбылись только через два с половиной столетия, когда выдающийся американский ученый, физик и математик Джон фон Нейман предложил использовать именно двоичную систему счисления в качестве универсального способа кодирования информации в электронных компьютерах ("Принципы Джона фон Неймана").

3. Запись числа в двоичной системе

Чем меньше знаков - цифр в одном разряде для записи в двоичной системе, тем больше надо разрядов, чтобы представить данное число. Возьмем, например число 8. В двоичной системе для его представления понадобятся четыре разряда: 1000.

Теперь возьмем другую запись в двоичной системе - 1111. Самая правая, последняя цифра так и будет единицей. Но уже следующая высшего разряда - больше ее только в два раза и означает 2, третья опять в два раза больше - 4, четвертая соответственно - 8.

Попробуем записать какое-нибудь число, допустим 1017, в двоичной системе. Для этого, как и в десятичной системе, раскладываем его на разряды, но разряды здесь выглядят по-иному. Начнем с низшего, с 7. Поскольку в двоичной системе каждый разряд в два раза больше последующего, число 7 запишется суммой трех двоичных разрядов: 7=4+2+ 1 (1 в 2 раза меньше 2; 2 в 2 раза меньше 4). В числе 7 одна четверка, одна двойка, одна единица: 7=4+2+ 1. Эту запись можно сделать по-другому: 1*22+ 1*21 + 1. Следовательно, в каждом из этих разрядов ставим по 1-111.

Затем идет число 10. Оно состоит из одной восьмерки и одной двойки: 10 = 8+2 = 1*23 + 0*22 + 1*21 + 0*20. Заметили, здесь нет разрядов единицы и четверок, поэтому вместо них мы ставим нули и записываем число так: 1010.

Так же можно разложить и все следующие разряды. Тогда все число 1017 запишется как 512 + 256 + 128 + 64 + 32 + 16 + 8 + 1= 1*29 + 1*28 + 1*27 + 1*26 + 1*25 + 1*24 + 1*23 + 0*22 + 0*21 + 1*20 и. Записываем по разрядам и получаем 1 111 111 001.

Основы двоичной системы, столь непривычной из-за традиции оперировать всегда и везде системой десятичной, мы знаем. Двоичной системой пользуются только вычислительные машины. Машина пересчитывает нули и единицы с очень большой скоростью.

Достоинства двоичной системы счисления заключаются в простоте реализации процессов хранения, передачи и обработки информации на компьютере:

1. Для ее реализации нужны элементы с двумя возможными состояниями, а не с десятью.

2. Представление информации посредством только двух состояний надежно и помехоустойчиво.

3. Возможность применения алгебры логики для выполнения логических преобразований.

4. Двоичная арифметика проще десятичной.

Недостатки двоичной системы счисления.

Итак, код числа, записанного в двоичной системе счисления, представляет собой последовательность из 0 и 1. большие числа занимают достаточно большое число разрядов.

Быстрый рост числа разрядов - самый существенный недостаток двоичной системы счисления.

Заключение

двоичный кодирование компьютер

Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, но применимо к компьютерной технике и ЭВМ двоичная система счисления имеет ряд преимуществ перед другими системами, т.к. для ее реализации нужны технические устройства лишь с двумя устойчивыми состояниями (есть ток -- нет тока, намагничен -- не намагничен и т.п.), а не, например, с десятью, -- как в десятичной; представление информации посредством только двух состояний надежно и помехоустойчиво; возможность применения аппарата булевой алгебры для выполнения логических преобразований информации; двоичная арифметика проще десятичной. Однако, недостаток двоичной системы -- быстрый рост числа разрядов, необходимых для записи чисел.

На сегодняшний день именно двоичная система счисления используется для кодирования и шифрования информации. Из всех существующих систем счисления двоичная система счисления наиболее удобна и применима в компьютерной технике и ЭВМ.

Список использованной литературы

1. Бобынин В.В. «Лекции по истории математики» («Физико-математические Науки», т. IХ и Х, лекции 2--6);

2. Бобынин В.В. «Исследования по истории математики» (вып. II, М., 1896).

3. Выгодский М.Я. Справочник по элементарной математике, М.: Государственное издательство технико-теоретической литературы, 1956.

4. Ролич Ч.Н. - От 2 до 16, Минск, «Высшая школа», 1981 г.

5. Фомин С.В. Системы счисления, М.: Наука, 1987.

Размещено на Allbest.ru

...

Подобные документы

    Факты появления двоичной системы счисления - позиционной системы счисления с основанием 2. Достоинства системы: простота вычислений и организации чисел, возможность сведения всех арифметических действий к одному - сложению. Применение двоичной системы.

    презентация , добавлен 10.12.2014

    Примеры правила перевода чисел с одной системы в другую, правила и особенности выполнения арифметических операций в двоичной системе счисления. Перевод числа с десятичной системы в двоичную систему счисления. Умножение целых чисел в двоичной системе.

    контрольная работа , добавлен 13.02.2009

    Определение информации, ее виды и свойства. Назначение основных блоков компьютера: процессор, память, системная магистраль, внешнее устройство. Архитектура фон Неймана. Характерные черты информации. Принцип использования двоичной системы счисления.

    контрольная работа , добавлен 21.02.2010

    Целые числа в позиционных системах счисления. Недостатки двоичной системы. Разработка алгоритмов, структур данных. Программная реализация алгоритмов перевода в различные системы счисления на языке программирования С. Тестирование программного обеспечения.

    курсовая работа , добавлен 03.01.2015

    Характеристика методов представления заданных чисел в двоичной, шестнадцатеричной, восьмеричной системе счисления. Представление указанного числа в четырехбайтовом IEEE формате. Разработка алгоритма обработки одномерных и двумерных числовых массивов.

    контрольная работа , добавлен 05.06.2010

    Понятие и виды систем счисления, принципы двоичной системы. Формы представления чисел в ЭВМ, виды кодирования информации. Оценка и выбор пакетов прикладных программ: преимущества операционной системы Windows, справочной системы "КонсультантПлюс".

    реферат , добавлен 21.06.2010

    Порождение целых чисел в позиционных системах счисления. Почему мы пользуемся десятичной системой, а компьютеры - двоичной (восьмеричной и шестнадцатеричной)? Перевод чисел из одной системы в другую. Математические действия в различных системах счисления.

    конспект произведения , добавлен 31.05.2009

    Логические элементы как устройства, предназначенные для обработки информации в цифровой форме. Определение основных отличительных особенностей и преимуществ двоичной и троичной систем счисления по сравнению с десятичной системой счисления, их типы.

    реферат , добавлен 20.11.2011

    лабораторная работа , добавлен 31.05.2009

    Числа с фиксированной точкой характеризуются длиной слова в битах, положением двоичной точки, бывают беззнаковыми или знаковыми. Позиция двоичной точки определяет число разрядов в целой и дробной частях машинного слова. Представление отрицательного числа.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Разнообразие компьютерных программ для геологических исследований и моделирования Разнообразие компьютерных программ для геологических исследований и моделирования Как найти человека в Интернете: самые простые методы Как найти человека в Интернете: самые простые методы Как правильно включить макбук? Как правильно включить макбук?