Различия между ранним и поздним связыванием в Java. Полиморфизм в Java

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Связывание в языке C++

Двумя основными целями при разработке языка программирования С++ были эффективное использование памяти и скорость выполнения. Он был задуман как усовершенствование языка С, в частности, для объектно-ориентированных приложений. Основной принцип С++: никакое свойство языка не должно приводить к возникновению дополнительных издержек (как по памяти, так и по скорости), если данное свойство программистом не используется. Например, если вся объектная ориентированность С++ игнорируется, то оставшаяся часть должна работать так же быстро, как и традиционный С. Поэтому неудивительно что большинство методов в С++ связываются статически (во время компиляции), а не динамически (во время выполнения).

Связывание методов в этом языке является довольно сложным. Для обычных переменных (не указателей или ссылок) оно осуществляется статически. Но когда объекты обозначаются с помощью указателей или ссылок, используется динамическое связывание. В последнем случае решение о выборе метода статического или динамического типа диктуется тем, описан ли соответствующий метод с помощью ключевого слова virtual. Если он объявлен именно так, то метод поиска сообщения базируется на динамическом классе, если нет на статическом. Даже в тех случаях, когда используется динамическое связывание, законность любого запроса определяется компилятором на основе статического класса получателя.

Рассмотрим, например, следующее описание классов и глобальных переменных: class Mammal

printf («cant speak»);

class Dog: public Mammal

printf («wouf wouf»);

printf («wouf wouf, as well»);

Mammal *fido = new Dog;

Выражение fred.speak() печатает «cant speak», однако вызов fido->speak() также напечатает «cant speak», поскольку соответствующий метод в классе Mammal не объявлен как виртуальный. Выражение fido->bark() не допускается компилятором, даже если динамический тип для fido класс Dog. Тем не менее статический тип переменной всего лишь класс Mammal.

Если мы добавим слово virtual:

virtual void speak()

printf («cant speak»);

то получим на выходе для выражения fido->speak() ожидаемый результат.

Относительно недавнее изменение в языке С++ добавление средств для распознавания динамического класса объекта. Они образуют систему RTTI (Run-Time Type Identification идентификация типа во время выполнения).

В системе RTTI каждый класс имеет связанную с ним структуру типа typeinfo, которая кодирует различную информацию о классе. Поле данных name одно из полей данных этой структуры содержит имя класса в виде текстовой строки. Функция typeid может использоваться для анализа информации о типе данных. Следовательно, следующая ниже команда будет печатать строку «Dog» динамический тип данных для fido. В этом примере необходимо разыменовывать переменную-указатель fido, чтобы аргумент был значением, на которое ссылается указатель, а не самим указателем:

cout << «fido is a» << typeid(*fido).name() << endl;

Можно также спросить, используя функцию-член before, соответствует ли одна структура с информацией о типе данных подклассу класса, соотносящегося с другой структурой. Например, следующие два оператора выдают true и false:

if (typeid(*fido).before (typeid(fred)))…

if (typeid(fred).before (typeid(lassie)))…

До появления системы RTTI стандартный программистский трюк состоял в том, чтобы явным образом закодировать в иерархии класса методы быть экземпляром. Например, для проверки значения переменных типа Animal на принадлежность к типу Cat или к типу Dog можно было бы определить следующую систему методов:

virtual int isaDog()

virtual int isaCat()

class Dog: public Mammal

virtual int isaDog()

class Cat: public Mammal

virtual int isaCat()

Теперь для определения того, является ли текущим значением переменной fido величина типа Dog, можно использовать команду fido->isaDog(). Если возвращается ненулевое значение, то можно привести тип переменной к нужному типу данных.

Возвращая указатель, а не целое число, мы объединяем проверку на принадлежность к подклассу и приведение типа. Это аналогично другой части системы RTTI, называемой dynamic_cast, которую мы вкратце опишем. Если некая функция в классе Mammal возвращает указатель на Dog, то класс Dog должен быть предварительно описан. Результатом присваивания является либо нулевой указатель, либо правильная ссылка на класс Dog. Итак, проверка результата все еще должна осуществляться, но мы исключаем необходимость приведения типа. Это показано в следующем примере:

class Dog; // предварительное описание

virtual Dog* isaDog()

virtual Cat* isaCat()

class Dog: public Mammal

virtual Dog* isaDog()

class Cat: public Mammal

virtual Cat* isaCat()

Оператор lassie = fido->isaDog(); теперь выполним всегда. В результате переменная lassie получает ненулевое значение, только если fido имеет динамический класс Dog. Если fido не принадлежит Dog, то переменной lassie будет присвоен нулевой указатель.

lassie = fido->isaDog();

… // fido и в самом деле относится к типу Dog

… // присваивание не сработало

… // fido не принадлежит к типу Dog

Хотя программист и может использовать этот метод для обращения полиморфизма, недостаток такого способа состоит в том, что требуется добавление методов как в родительский, так и в дочерний классы. Если из одного общего родительского класса проистекает много дочерних, метод становится громоздким. Если изменения в родительском классе не допускаются, такая техника вообще невозможна.

Поскольку подобные проблемы встречаются часто, было найдено их общее решение. Функция шаблона dynamic_cast берет тип в качестве аргумента шаблона и, в точности как функция, определенная выше, возвращает либо значение аргумента (если приведение типа законно), либо нулевое значение (если приведение типа неразрешено). Присваивание, эквивалентное сделанному в предыдущем примере, может быть записано так:

// конвертировать только в том случае, если fido является собакой

lassie = dynamic_cast < Dog* > (fido);

// затем проверить, выполнено ли приведение

В язык C++ были добавлены еще три типа приведения (static_cast, const_cast и reinterpret_cast), но они используются в особых случаях и поэтому здесь не описываются. Программистам рекомендуется применять их как более безопасные средства вместо прежнего механизма приведения типов.

2. Проектная часть

Mar 23, 2010 dec5e

В PHP 5.3 появилась такая интересная возможность, как позднее статическое связывание (late static binding). Дальше немного вольный перевод описания из официального мануала .

Начиная с PHP 5.3.0 в языке реализована возможность, называемая поздним статическим связыванием, которая может использоваться для ссылки на вызываемый класс в контексте статического наследования.

Эту возможность назвали «позднее статическое связывание». «Позднее связывание» говорит о том, что static:: будет разрешаться не относительно класса, где определен метод, но будет вычисляться во время выполнения. «Статическое связывание» означает, что оно может быть использовано в вызовах статических методов (но не ограничивается только ими).

Ограничения self::

Пример № 1: использование self::

Пример выведет:

Использование позднего статического связывания

Позднее статическое связывание пытается решить это ограничение, вводя ключевое слово, ссылающееся на класс, первоначально вызванный в процессе выполнения. То есть, ключевое слово, которое позволит сослаться на B из test() в предыдущем примере. Было решено не вводить новое слово, а использовать уже зарезервированное static .

Пример № 2: простое использование static::

Пример выведет:

Замечание: static:: не работает как $this для статических методов! $this-> следует правилам наследования, а static:: нет. Это различие уточняется ниже.

Пример № 3: использование static:: в нестатическом контексте

test(); ?>

Пример выведет:

Замечание: Позднее статическое связывание останавливает процесс разрешения вызова. Статические вызовы с использованием ключевых слов parent:: или self:: передают информацию о вызове дальше.

Пример № 4: Передача и непередача вызовов

Пример выведет

Крайние случаи

Существует множество различных способов вызвать метод в PHP, такие как коллбэки или магически методы. Поскольку позднее статическое связывание разрешается во время выполнения, это может привести к неожиданным результатам в так называемых крайних случаях.

Пример № 5 Позднее статическое связывание в магических методах

foo; ?>


Я действительно запутался в динамической привязке и статической привязке. Я читал, что определение типа объекта во время компиляции называется статической привязкой и определение его во время выполнения называется динамическим связыванием.

Что происходит в коде ниже:

Статическое связывание или динамическое связывание?
Что это за полиморфизм?

Class Animal { void eat() { System.out.println("Animal is eating"); } } class Dog extends Animal { void eat() { System.out.println("Dog is eating"); } } public static void main(String args) { Animal a=new Animal(); a.eat(); }


2018-05-20 10:33


2018-05-20 10:46

Проверь это класс сотрудника имеет абстрактный earning() функции, и каждый класс имеет toString() реализация

Employee employees = new Employee; // initialize array with Employees employees = new SalariedEmployee(); employees = new HourlyEmployee(); employees = new CommissionEmployee(); employees = new BasePlusCommissionEmployee(); for (Employee currentEmployee: employees){ System.out.println(currentEmployee); // invokes toString System.out.printf("earned $%,.2f%n", currentEmployee.earnings()); }

Все вызовы метода toString а также earnings разрешаются на execution time , на основе type of the object к которому относится текущий сотрудник,

Этот процесс известен как dynamic binding или late binding

Данный параграф , несмотря на краткость, является очень важным – практически все профессиональное программирование в Java основано на использовании полиморфизма. В то же время эта тема является одной из наиболее сложных для понимания учащимися. Поэтому рекомендуется внимательно перечитать этот параграф несколько раз.

Методы классов помечаются модификатором static не случайно – для них при компиляции программного кода действует статическое связывание . Это значит, что в контексте какого класса указано имя метода в исходном коде, на метод того класса в скомпилированном коде и ставится ссылка . То есть осуществляется связывание имени метода в месте вызова с исполняемым кодом этого метода. Иногда статическое связывание называют ранним связыванием , так как оно происходит на этапе компиляции программы. Статическое связывание в Java используется еще в одном случае – когда класс объявлен с модификатором final ("финальный", "окончательный").

Методы объектов в Java являются динамическими, то есть для них действует динамическое связывание . Оно происходит на этапе выполнения программы непосредственно во время вызова метода, причем на этапе написания данного метода заранее неизвестно, из какого класса будет проведен вызов. Это определяется типом объекта, для которого работает данный код - какому классу принадлежит объект , из того класса вызывается метод. Такое связывание происходит гораздо позже того, как был скомпилирован код метода. Поэтому такой тип связывания часто называют поздним связыванием .

Программный код, основанный на вызове динамических методов , обладает свойством полиморфизма – один и тот же код работает по -разному в зависимости от того, объект какого типа его вызывает, но делает одни и те же вещи на уровне абстракции, относящейся к исходному коду метода.

Для пояснения этих не очень понятных при первом чтении слов рассмотрим пример из предыдущего параграфа – работу метода moveTo. Неопытным программистам кажется, что этот метод следует переопределять в каждом классе-наследнике. Это действительно можно сделать, и все будет правильно работать. Но такой код будет крайне избыточным – ведь реализация метода будет во всех классах-наследниках Figure совершенно одинаковой:

public void moveTo(int x, int y){ hide(); this.x=x; this.y=y; show(); };

Кроме того, в этом случае не используются преимущества полиморфизма. Поэтому мы не будем так делать.

Еще часто вызывает недоумение, зачем в абстрактном классе Figure писать реализацию данного метода. Ведь используемые в нем вызовы методов hide и show , на первый взгляд, должны быть вызовами абстрактных методов – то есть, кажется, вообще не могут работать!

Но методы hide и show являются динамическими, а это, как мы уже знаем, означает, что связывание имени метода и его исполняемого кода производится на этапе выполнения программы. Поэтому то, что данные методы указаны в контексте класса Figure , вовсе не означает, что они будут вызываться из класса Figure ! Более того, можно гарантировать, что методы hide и show никогда не будут вызываться из этого класса. Пусть у нас имеются переменные dot1 типа Dot и circle1 типа Circle , и им назначены ссылки на объекты соответствующих типов. Рассмотрим, как поведут себя вызовы dot1.moveTo(x1,y1) и circle1.moveTo(x2,y2) .

При вызове dot1.moveTo(x1,y1) происходит вызов из класса Figure метода moveTo . Действительно, этот метод в классе Dot не переопределен, а значит, он наследуется из Figure . В методе moveTo первый оператор – вызов динамического метода hide . Реализация этого метода берется из того класса, экземпляром которого является объект dot1 , вызывающий данный метод. То есть из класса Dot . Таким образом, скрывается точка. Затем идет изменение координат объекта, после чего вызывается динамический метод show . Реализация этого метода берется из того класса, экземпляром которого является объект dot1 , вызывающий данный метод. То есть из класса Dot . Таким образом, на новом месте показывается точка.

Для вызова circle1.moveTo(x2,y2) все абсолютно аналогично – динамические методы hide и show вызываются из того класса, экземпляром которого является объект circle1 , то есть из класса Circle . Таким образом, скрывается на старом месте и показывается на новом именно окружность .

То есть если объект является точкой, перемещается точка. А если объект является окружностью - перемещается окружность . Более того, если когда-нибудь кто-нибудь напишет, например, класс Ellipse , являющийся наследником Circle , и создаст объект Ellipse ellipse=new Ellipse(…) , то вызов ellipse.moveTo(…) приведет к перемещению на новое место эллипса. И происходить это будет в соответствии с тем, каким образом в классе Ellipse реализуют методы hide и show . Заметим, что работать будет давным-давно скомпилированный полиморфный код класса Figure . Полиморфизм обеспечивается тем, что ссылки на эти методы в код метода moveTo в момент компиляции не ставятся – они настраиваются на методы с такими именами из класса вызывающего объекта непосредственно в момент вызова метода moveTo .

В объектно-ориентированных языках программирования различают две разновидности динамических методов – собственно динамические и виртуальные . По принципу работы они совершенно аналогичны и отличаются только особенностями реализации. Вызов виртуальных методов быстрее. Вызов динамических медленнее, но служебная таблица динамических методов ( DMT – Dynamic Methods Table ) занимает чуть меньше памяти, чем таблица виртуальных методов ( VMT – Virtual Methods Table ).

Может показаться, что вызов динамических методов неэффективен с точки зрения затрат по времени из-за длительности поиска имен. На самом деле во время вызова поиска имен не делается, а используется гораздо более быстрый механизм, использующий упомянутую таблицу виртуальных (динамических) методов. Но мы на особенностях реализации этих таблиц останавливаться не будем, так как в Java нет различения этих видов методов.

6.8. Базовый класс Object

Класс Object является базовым для всех классов Java . Поэтому все его поля и методы наследуются и содержатся во всех классах. В классе Object содержатся следующие методы:

  • public Boolean equals(Object obj) – возвращает true в случае, когда равны значения объекта, из которого вызывается метод, и объекта, передаваемого через ссылку obj в списке параметров. Если объекты не равны, возвращается false . В классе Object равенство рассматривается как равенство ссылок и эквивалентно оператору сравнения "==" . Но в потомках этот метод может быть переопределен, и может сравнивать объекты по их содержимому. Например, так происходит для объектов оболочечных числовых классов. Это легко проверить с помощью такого кода:

    Double d1=1.0,d2=1.0; System.out.println("d1==d2 ="+(d1==d2)); System.out.println("d1.equals(d2) ="+(d1.equals(d2)));

    Первая строка вывода даст d1==d2 =false , а вторая d1. equals (d2) =true

  • public int hashCode() – выдает хэш-код объекта. Хэш-кодом называется условно уникальный числовой идентификатор, сопоставляемый какому-либо элементу. Из соображений безопасности выдавать адрес объекта прикладной программе нельзя. Поэтому в Java хэш-код заменяет адрес объекта в тех случаях, когда для каких-либо целей надо хранить таблицы адресов объектов.
  • protected Object clone() throws CloneNotSupportedException – метод занимается копированием объекта и возвращает ссылку на созданный клон (дубликат) объекта. В наследниках класса Object его обязательно надо переопределить, а также указать, что класс реализует интерфейс Clonable . Попытка вызова метода из объекта, не поддерживающего клонирования , вызывает возбуждение исключительной ситуации CloneNotSupportedException ("Клонирование не поддерживается"). Про интерфейсы и исключительные ситуации будет рассказано в дальнейшем.

    Различают два вида клонирования : мелкое (shallow ), когда в клон один к одному копируются значения полей оригинального объекта, и глубокое (deep ), при котором для полей ссылочного типа создаются новые объекты, клонирующие объекты, на которые ссылаются поля оригинала. При мелком клонировании и оригинал, и клон будут ссылаться на одни и те же объекты. Если объект имеет поля только примитивных типов , различия между мелким и глубоким клонированием нет. Реализацией клонирования занимается программист, разрабатывающий класс, автоматического механизма клонирования нет. И именно на этапе разработки класса следует решить, какой вариант клонирования выбирать. В подавляющем большинстве случаев требуется глубокое клонирование .

  • public final Class getClass() – возвращает ссылку на метаобъект типа класс. С его помощью можно получать информацию о классе, к которому принадлежит объект, и вызывать его методы класса и поля класса .
  • protected void finalize() throws Throwable – вызывается перед уничтожением объекта. Должен быть переопределен в тех потомках Object , в которых требуется совершать какие-либо вспомогательные действия перед уничтожением объекта (закрыть файл, вывести сообщение, отрисовать что-либо на экране, и т.п.). Подробнее об этом методе говорится в соответствующем параграфе.
  • public String toString() – возвращает строковое представление объекта (настолько адекватно, насколько это возможно). В классе Object этот метод реализует выдачу в строку полного имени объекта (с именем пакета), после которого следует символ "@" , а затем в шестнадцатеричном виде хэш-код объекта. В большинстве стандартных классов этот метод переопределен. Для числовых классов возвращается строковое представление числа, для строковых – содержимое строки, для символьного – сам символ (а не строковое представление его кода!). Например, следующий фрагмент кода

    Object obj=new Object(); System.out.println(" obj.toString() дает "+obj.toString()); Double d=new Double(1.0); System.out.println(" d.toString()дает "+d.toString()); Character c="A"; System.out.println("c.toString() дает "+c.toString());

    обеспечит вывод

    obj.toString() дает java.lang.Object@fa9cf d.toString()дает 1.0 c.toString()дает A

Также имеются методы notify() , notifyAll() , и несколько перегруженных вариантов метода wait , предназначенные для работы с потоками (threads). О них говорится в разделе, посвященном потокам.

6.9. Конструкторы. Зарезервированные слова super и this. Блоки инициализации

Как уже говорилось, объекты в Java создаются с помощью зарезервированного слова new , после которого идет конструктор – специальная подпрограмма , занимающаяся созданием объекта и инициализацией полей создаваемого объекта. Для него не указывается тип возвращаемого значения, и он не является ни методом объекта (вызывается через имя класса когда объекта еще нет), ни методом класса (в конструкторе доступен объект и его поля через ссылку this ). На самом деле конструктор в сочетании с оператором new возвращает ссылку на создаваемый объект и может считаться особым видом методов, соединяющим в себе черты методов класса и методов объекта.

Если в объекте при создании не нужна никакая дополнительная инициализация , можно использовать конструктор , который по умолчанию присутствует для каждого класса. Это имя класса , после которого ставятся пустые круглые скобки – без списка параметров. Такой конструктор при разработке класса задавать не надо, он присутствует автоматически.

Если требуется инициализация , обычно применяют конструкторы со списком параметров. Примеры таких конструкторов рассматривались нами для классов Dot и Circle . Классы Dot и Circle были унаследованы от абстрактных классов , в которых не было конструкторов. Если же идет наследование от неабстрактного класса, то есть такого, в котором уже имеется конструктор (пусть даже и конструктор по умолчанию), возникает некоторая специфика. Первым оператором в конструкторе должен быть вызов конструктора из суперкласса . Но его делают не через имя этого класса, а с помощью зарезервированного слова super (от " superclass "), после которого идет необходимый для прародительского конструктора список параметров. Этот конструктор инициализирует поля данных, которые наследуются от суперкласса (в том числе и от всех более ранних прародителей). Например, напишем класс FilledCircle - наследник от Circle , экземпляр которого будет отрисовываться как цветной круг.

package java_gui_example; import java.awt.*; public class FilledCircle extends Circle{ /** Creates a new instance of FilledCircle */ public FilledCircle(Graphics g,Color bgColor, int r,Color color) { super(g,bgColor,r); this.color=color; } public void show(){ Color oldC=graphics.getColor(); graphics.setColor(color); graphics.setXORMode(bgColor); graphics.fillOval(x,y,size,size); graphics.setColor(oldC); graphics.setPaintMode(); } public void hide(){ Color oldC=graphics.getColor(); graphics.setColor(color); graphics.setXORMode(bgColor); graphics.fillOval(x,y,size,size); graphics.setColor(oldC); graphics.setPaintMode(); }}

Вообще, логика создания сложно устроенных объектов: родительская часть объекта создается и инициализируется первой, начиная от части, доставшейся от класса Object , и далее по иерархии, заканчивая частью, относящейся к самому классу. Именно поэтому обычно первым оператором конструктора является вызов прародительского конструктора super (список параметров ), так как обращение к неинициализированной части объекта, относящейся к ведению прародительского класса, может привести к непредсказуемым последствиям.

В данном классе мы применяем более совершенный способ отрисовки и "скрывания" фигур по сравнению с предыдущими классами. Он основан на использовании режима рисования XOR ("исключающее или"). Установка этого режима производится методом setXORMode . При этом повторный вывод фигуры на то же место приводит к восстановлению первоначального изображения в области вывода. Переход в обычный режим рисования осуществляется методом setPaintMode .

В конструкторах очень часто используют

Связывание - подстановка в коды программы вызовов конкретных функций -методов класса . Имеет смысл только для производных классаов.

Обычно компилятор имеет необходимую информацию для того, чтобы определить, какая функция имеется в виду. Например, если в программе встречается вызов obj.f(), компилятор однозначно выбирает функцию f()в зависимости от типа адресатаobj. Если в программе используются указатели на экземпляры класса:ptr->f(), выбор функции - метода класса определяется типом указателя.

Если выбор функции выполняется на этапе компиляции, мы имеем дело со статическим связыванием .

В этом случае для указателя на базовый класс будет вызвана функция - метод базового класса, даже если указателю на базовый класс присвоить значение адреса экземпляра производного класса.

Если выбор функции выполняется на этапе выполнения программы, мы имеем дело с динамическим связыванием .

В этом случае если при выполнении программы указателю на базовый класс присвоить адрес экземпляра базового класса, будет вызван метод базового класса; если же указателю на базовый класс присвоить адрес экземпляра производного класса, будет вызван метод производного класса.

Виртуальные функции

По умолчанию для производных классов устанавливается статичесое связывание. Если для каких-либо методов класса нужно использовать динамическое связывание, такие методы должны быть объявлены виртуальными .

Виртуальные функции:

    имеют в прототипе в базовом классе ключевое слово virtual;

    обязательно функции-члены класса:

    Во всех производных классах должны иметь такой же прототип (указание слова virtualв производных классах не обязательно).

Если какие-либо методы в производных классах имеют то же имя, что и в базовом классе, но другой список параметров, мы имеем делео с перегруженными функциями.

Пример: классы Точка и Окружность.

virtual void print();

class Circle: public Point{

void print(); // можно virtual void print();

void Point::print()

cout << "Point (" << x << ", " << y << ")";

void Circle::print()

cout << "Circle with center in "; Point::print();

cout << "and radius " << rad;

Использование:

Point p1(3,5), p2(1,1), *pPtr;

Cicle c1(1), c2(p2, 1);

pPtr = &p1; pPtr->print(); // получим: Point (3, 5)

pPtr = &c2; pPtr->print(); // получим:

Circle with center in Point (1, 1) and radius 1

Пример использования динамического связывания: список

Наиболее часто динамичесое связывание используется с контейнерными классами, содержащими указатель на базовый класс; в такие контейнерные классы можно включать информацию, относящуюся и к базовому, и к любым производным классам.

Рассмотрим пример - список, содержащий и точки, и окружности.

// конструктор

Item():info(NULL), next(NULL){}

Item(Point *p):info(p), next(NULL){}

List():head(NULL){}

void insert(Point *p){p->next = head; head = p;}

void List::print()

for(Item *cur = head; cur; cur = cur->next){

cur->info->print();

cout << endl;

Использование класса:

Point *p = new Point(1,2);

mylist.insert(p);

p = new Cicle(1,2,1);

mylist.insert(p);

Circle with center in Point (1, 2) and radius 1

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Этот издатель был заблокирован и его программы не будут запускаться Разблокировка windows 10 Этот издатель был заблокирован и его программы не будут запускаться Разблокировка windows 10 Тестируем оперативную память на работоспособность Тестируем оперативную память на работоспособность Что такое SSD и «с чем его едят Твердотельная память Что такое SSD и «с чем его едят Твердотельная память